科学ニュース速報

2ちゃんねるsc「科学ニュース板」のまとめブログです

2015年09月

1: もろ禿 ◆SHINE.1vOk もろ禿HINE! ★@\(^o^)/ 2015/09/30(水) 18:03:39.88 ID:???.net
共同発表:鉄系高温超伝導の磁石化に成功~強力磁石開発へ新しい可能性~
http://www.jst.go.jp/pr/announce/20150930/index.html


no title

図1 強力磁石の磁場発生のメカニズム
強磁性永久磁石では向きの揃ったスピンが、コイル電磁石では電流ループが磁場の起源で、それぞれ磁化、外部電源からの電流供給により磁石となる。一方、超伝導バルク磁石では電磁石と同様に超伝導電流ループが磁場の起源であるが、永久磁石と同様に一度磁化すると、遠隔的に誘導された超伝導電流ループが抵抗ゼロのため減衰せず、冷却下では永久磁石と同じように使用することができる。超伝導体の電流エネルギー密度は銅より100倍以上高いため、小型でも非常に強力な磁石になる。今回、数十ナノメートルの微細な鉄系高温超伝導体の結晶をバルク(塊)にすることで、1テスラを超える磁力を持つ強力磁石にすることに成功した。
no title

図2 試作した鉄系高温超伝導バルク磁石
中央の黒い部分(直径1cm)が鉄系高温超伝導体。周囲は複合金属リング。


ポイント
希少元素を使用しない、新しい高性能磁石開発が求められていた。
多結晶バルク(塊)を用いて、市販のネオジム磁石の2倍の磁力を持つ鉄系高温超伝導体の磁石化に初めて成功した。
10テスラ級の小型磁石が数年以内に実現することが期待できる。


JST 戦略的創造研究推進事業において、東京農工大学の山本 明保 特任准教授らは、鉄系高温超伝導を応用した強力磁石の開発に初めて成功しました。

医療・エネルギー分野の先端機器に使用される強力な超伝導磁石は、極低温で動作可能となることから、冷却のために稀少で高価な液体ヘリウムが用いられています。また、ネオジム磁石をはじめとする強磁性磁石ではレアアース元素が必須でした。そのため液体ヘリウムを 使わず、より高い温度で使える高温超伝導体の研究開発が進められてきましたが、これまで鉄系高温超伝導体を磁石にする技術は確立されていませんでした。

山本特任准教授らは、結晶サイズをナノ領域(ナノは10億分の1)まで微細化した多結晶をバルク(塊)状にすることで、直径1cmの小型サイズでも鉄系高温超伝導体が1テスラを超える強力な磁石となることを実証しました。また、ナノ多結晶からなる鉄系バルク磁石は磁力の均一性が高く、さらに硬く割れにくいことを明らかにしました。

原料にレアアース元素を含まず、作製プロセスも単純・安価であり、小型冷凍機で動作させることができるので、強力な超伝導磁石の小型化、ポータブル化の道がひらくと期待されます。
セラミックス合成の標準的な作製プロセスが応用できるため、他の材料でも同様の強力磁石ができると予想され、ナノ多結晶からなる超伝導バルクは強力磁石開発の新しい指針となると期待されます。

本研究は、米国立強磁場研究所のエリック・ヘルストロム 教授、デビッド・ラバレスティエ 教授らと共同で、日本学術振興会 科学研究費補助金、アメリカ国立科学財団の助成を一部受けて行ったものです。

本研究成果は、2015年9月30日(英国時間)に英国物理学会発行の科学誌「Superconductor Science and Technology」のオンライン速報版で公開されます。

引用元:http://anago.2ch.sc/test/read.cgi/scienceplus/1443603819/
  続きを読む

1: もろ禿 ◆SHINE.1vOk もろ禿HINE! ★@\(^o^)/ 2015/09/30(水) 18:01:38.04 ID:???.net
CNN.co.jp : 蛍光色放つ発光ウミガメ、南太平洋で発見
http://www.cnn.co.jp/fringe/35071193.html


no title



(CNN) 南太平洋の海底で海洋生物の調査を行っていた米国の研究チームが、緑と赤の蛍光色を放つウミガメに遭遇し、映像の撮影に成功した。爬虫類の蛍光発光が確認されたのは初めてだという。

発光ウミガメはニューヨーク市立大学の海洋生物学調査団が7月下旬、南太平洋のソロモン諸島付近で泳ぐ姿をカメラに収め、28日に映像を公開した。発光していたのはウミガメ科のタイマイで、海中のサンゴ礁を撮影していたところ、照明の中に入って来たという。同大のデービッド・グルバー氏は「思いがけない姿に誰もが驚いた」と話している。

生物の蛍光発光現象はこれまでに、サンゴやカニなどの節足動物、サメや魚類など200種あまりで確認されている。

発光は一般的に、獲物をおびき寄せたり外敵から身を守ったりするなどの役割を果たす。カメの発光はカムフラージュの助けになっている可能性もあるが、理由はまだ解明できていない。

タイマイは個体数が激減して絶滅危惧種に指定されており、保護や生態の調査を急ぐ必要があるとグルバー氏は指摘している。

引用元:http://anago.2ch.sc/test/read.cgi/scienceplus/1443603698/
  続きを読む

1: もろ禿 ◆SHINE.1vOk もろ禿HINE! ★@\(^o^)/ 2015/09/29(火) 21:46:52.43 ID:???.net
らせん空孔が大面積で完全に配向した有機ゼオライト | 理化学研究所
http://www.riken.jp/pr/press/2015/20150929_2/


no title

図1 らせん空孔が大面積で完全に配向した有機ゼオライトの合成と利用
a:重合性カルボン酸とキラルなアミンとを等モルで混合する。b:カルボン酸とアミンとの塩から筒状構造の液晶を構成し、これを磁場により大面積で配向させる。c:磁場により大面積配向した筒状構造の液晶を重合し、構造固定する。d: 重合後の構造体から鋳型となるアミンを除去し、空孔をつくる。e:得られた空孔に、カチオン性または塩基性のゲスト分子を包摂(包み込むこと)させる。
no title

図2 磁場による液晶の大面積配向
a:磁場をかけないでつくった液晶フィルムの模式図(上段)と偏光顕微鏡像(下段)。
b:磁場をかけてつくった液晶フィルムの模式図(上段)と偏光顕微鏡像(下段)。
bは筒が一方向に配向している様子が分かる。
no title

図3 らせん空孔が大面積で完全に配向した有機ゼオライトよりなるポリマーフィルム
a, 合成直後のフィルムの模式図(上段)、外観(中段)、および偏光顕微鏡像(下段)。b, ゲスト分子を包摂させたフィルムの模式図(上段)、外観(中段)、および偏光顕微鏡像(下段)。
no title

図4 小角X線散乱測定により明らかとなったらせん空孔の構造
A:筒状の二重らせんが蜂の巣状に充填された構造。B:個々の二重らせんの構造


要旨

理化学研究所(理研)創発物性科学研究センター創発生体関連ソフトマター研究チームの石田康博チームリーダーらの研究チーム※は、らせん状のナノ空孔が数平方センチメートル(cm2)の大面積にわたり同一方向に並んだ、全く新しいタイプの有機ゼオライト[1]の開発に成功しました。

近年、ゼオライトや金属有機構造体(MOF)[2]に代表される、規則正しく並んだ空孔を持つ材料が注目を集めています。空孔のサイズ・形状・組成を適切に設計することにより、狙いの分子を空孔内に捕捉することができる多孔性材料は、分子を貯蔵・配列したり、似ていても性質が異なる分子と識別・分離したり、あるいは別の分子へと変換したりする上で、極めて有用なツールです。
実際に、ガス吸蔵材、排気ガスフィルタ、固体触媒などとして利用されています。しかし、多孔性材料の開発では、未だに達成されていない課題が残されています。まず、空孔の向きを大面積でそろえることが極めて困難であり、空孔の向きがそろった区域は数平方マイクロメートル(μm2、1μmは100万分の1メートル)からせいぜい数平方ミリメートル(mm2、1mmは1000分の1メートル)程度にしかなりません。また、加工性や柔軟性に乏しいため、ほとんどの多孔性材料は粉末として、あるいは粉末を固めた塊として利用されています。さらに、非対称な形状の空孔を作ることが難しく、
とりわけキラリティ[3]を持つ空孔の開発は、医農薬・食品添加物・光学材料を扱う分野で待ち望まれているにも関わらず、実用に耐えるものはありません。これらの課題を解決した理想的な多孔性材料が得られれば、学術・実用の両面で革新的な物質となる可能性があります。

研究チームは、結晶に準ずる規則構造を持ちながらも、重合反応や磁場配向を許容する自由度を持ち、なおかつキラリティを持たせることも容易な材料である「液晶」に着目しました。キラルな筒状構造の液晶を磁場で配向させた後、全体を重合反応で固めることにより、らせん状のナノ空孔が数cm2の大面積にわたって同一方向に並んだ多孔性材料の合成に成功しました。この空孔は、さまざまな機能性分子をキラルな位置関係に配列できます。加工性・柔軟性・配向性・キラリティと、これまでの多孔性材料に欠けていた全ての要素を兼ね備えた今回の材料は、多孔性材料の用途を大きく広げ、今後さまざまな展開を引き起こすと期待できます。

本研究は、総合科学技術・イノベーション会議の革新的研究開発推進プログラム(ImPACT)により、科学技術振興機構を通して委託されたものです。成果は、国際科学雑誌『Nature Communications』に掲載にされるに先立ち、オンライン版(9月29日付け)に掲載されます。


(以下略)

引用元:http://anago.2ch.sc/test/read.cgi/scienceplus/1443530812/
  続きを読む

↑このページのトップヘ